Kiril Datchev MA 495/595 Spring 2024

Homework 5

Due February 15th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. There are some hints on the second page.

- 1. Borthwick Exercises 5.3, 5.4.
- 2. (a) Let $\Omega \subset \mathbb{R}^n$ be bounded, and let $0 < \lambda_1 \leq \lambda_2 \leq \cdots$ be the Dirichlet eigenvalues of Ω , with corresponding eigenfunctions $\varphi_1, \varphi_2, \ldots$. Given a constant $\gamma > 0$, consider the damped wave equation

$$u_{tt} + \gamma u_t - \Delta u = 0.$$

Find

 $\beta = \min\{\operatorname{Im} \omega: \text{ for some } k, u(t,x) = \varphi_k(x)e^{i\omega t} \text{ solves the damped wave equation.}\}$

In words, β is the smallest value Im ω can take for damped waves.¹ The quantity β is called the *decay rate* of the damped waves.

- (b) Let $\mathcal{E}(t) = \mathcal{E}_K(t) + \mathcal{E}_P(t)$, where $\mathcal{E}_K(t) = \frac{1}{2} \int_{\Omega} |u_t|^2 dx$ and $\mathcal{E}_P(t) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx$. Find a positive constant C such that $\mathcal{E}'(t) = -C\gamma \mathcal{E}_K(t)$, and conclude that $\mathcal{E}(t)$ is nonincreasing.
- (c) Let n = 1 and let Ω be an interval of lenght L. Find the choice of $\gamma = \gamma_c$ (in terms of L) that makes β the largest it can be. (If $\gamma < \gamma_c$, then the system is *underdamped*, and more damping yields faster decay, but if $\gamma > \gamma_c$, then it is *overdamped*, and more damping yields slower decay; cf. the damped harmonic oscillator from ODEs.)

¹At this point we are only examining damped waves of product form, but we will see that it works for more general damped waves.

Hints:

5.4. The values of ω are obtained by solving a quadratic equation, and as usual you get different cases depending on the sign of the discriminant.

2a. The value of β should be in terms of γ and λ_1 , again with different cases depending on the sign of a discriminant.